Интегралы примеры решений задач типового расчета по математике

Физика
Живопись

Термех

Лекции
На главную

Первый интеграл является табличным: .

Во втором интеграле воспользуемся тем, что .

Получим следующую запись .

Если представить, что arcsinx=t, то данный интеграл будет интегралом от степени , но явно переходить к переменной t нет необходимости.

.

Таким образом, для заданного интеграла имеем:

Пример 4. Найти интеграл .

Решение. Отделим от нечетной степени один множитель: .

Если положить , то . Перейдем в интеграле к новой переменной t:

Возвратившись к прежней переменной, получаем: .

Пример 5. Найти интеграл .

Решение. Понизим у  и  степень с помощью следующих формул: .

Тогда в исходном интеграле получим следующее:

.

Так как дроби между собой равны, а также равны их знаменатели, то и числители также равны. Поэтому у многочленов, стоящих в числителе приравняем коэффициенты при х2,х1,х0 и получим систему трех уравнений с тремя неизвестными:

.

Решив эту систему получим следующие значения A, B и C: .

Значит, наша дробь раскладывается на сумму дробей:

.

Подставляя это разложение в интеграл, получаем:

Пример 8. Найти интеграл .

Определенный интеграл

1. Вычисление определенного интеграла

Пример 9. Вычислить интеграл .

Решение. Для того, чтобы вычислить данный интеграл, воспользуемся основной тригонометрической заменой:

 

Так как данный интеграл является определенным, то при замене переменной , меняются пределы интегрирования:

.

На отрезке  по переменной t функция  непрерывно дифференцируема, монотонна и в границах его принимает значения границ отрезка  по переменной x. Следовательно, выбранная замена переменной правомерна. Получаем:

.

Несобственный интеграл.

Пример 10. Вычислить несобственный интеграл  или доказать его расходимость.

Решение. Перейдем от несобственного интеграла к определенному с границами .Далее считаем полученный интеграл, с помощью обычных правил интегрирования:

Пример 11. Вычислить несобственный интеграл  или установить его расходимость.

Площадь плоской криволинейной трапеции.

Пример 13. Вычислить площадь фигуры, ограниченной линиями:

.

Решение. Построим фигуру, площадь которой надо вычислить. Одной из линий является параболой с вершиной в точке С с координатами (3;4). Вторая линия - прямая.

Найдем координаты точек пересечения данных линий:

Вычисление длины дуги кривой.

Пример 15. Вычислить длину дуги кривой: , между точками пересечения с осями координат.

Решение. Данная кривая задана в параметрическом виде, то есть x и y зависят от параметра t. Поэтому, чтобы построить точку с координатами (x,y) нужно задать некоторое значение параметра и потом посчитать x и y .

Построим график и найдем точки пересечения с осями координат:

Длина дуги вычисляется по формуле .

Для данной задачи .

Подставляя все эти значения в формулу, получаем :

Тройной интеграл в цилиндрических и сферических координатах

Цилиндрические координаты точки в пространстве - это ее полярные координаты в XOY и координата Z.

Связь между декартовыми и цилиндрическими координатами:

Перевод тройного интеграла к цилиндрическим координатам и сведение к повторному трехкратному интегралу осуществляется следующим образом:

Переход к сферическим координатам осуществляется функциями

r - расстояние точки M от начала координат (длина радиус-вектора точки);

- угол между радиус-вектором и положительным направлением оси OZ;

- угол между положительным направлением оси OX и проекцией радиус-вектора на плоскость XOY, отсчитываемый против часовой стрелки (полярный угол).

Границы изменения сферических координат для всех точек пространства:

Связь сферических и декартовых координат:

Далее тройной интеграл сводится к трехкратному в соответствии с неравенствами для области V в сферических координатах.

Эффективно переводить в сферические координаты тройной интеграл по областям, в границах которых есть сфера.

Пример 14

Вычислить , где

Решение

Запишем неравенствами область V в сферических координатах:

Применение тройных интегралов.

I. Масса неоднородного тела. Тройной интеграл.

Рассмотрим тело, занимающее пространственную область  (рис. 1), и предположим, что плотность распределения массы в этом теле является непрерывной функцией координат точек тела:

    

Единица измерения плотности - кг/м3.

                                Рис. 1.

Разобьем тело произволь­ным образом на n частей; объемы этих частей обозначим   Выберем затем в каждой части по про­извольной точке  Полагая, что в, каждой час­тичной области плотность по­стоянна и равна ее значению в точке , мы получим при­ближенное  выражение для массы всего тела в виде суммы 

Декартовы координаты.

Пусть дан тройной интеграл от функции

причем область  отнесена к системе декартовых координат Oxyz, Разобьем область интегрирования и плоскостями, параллельными координатным плоскостям. Тогда частичными областями будут параллелепипеды с гранями, параллельными плоскостям Оху, Охz, Оуz. Элемент объема .будет равен, произведению дифференциалов переменных интегрирования

В соответствии с этим будем писать

Установим теперь правило для вычисления    такого интеграла.

Если же в общем случае менять порядок интегрирования ( т.е., скажем, интегрировать сначала по направлению оси Oy, а затем по области плоскости Oxz), то это приведёт к изменению порядка интегрирования в тройном интеграле и к изменению пределов интегрирования по каждой переменной.

         Рис.3                                            Рис.4

А) Пример.

Вычислим тройной интеграл

Цилиндрические координаты.

Отнесём область  к системе цилиндрических координат , в которой положение точки M в пространстве определяется полярными координатами  ее проекции Р на плос­кость Oxy и ее аппликатой (z). Выбирая взаимное распо­ложение осей координат, как указано на рис. 5, уста­новим связь, между декарто­выми и цилиндрическими ко­ординатами точки М, именно:

             (*)

                      Рис.5

Разобьем область  на частичные области  тремя системами координатных поверхностей:  которыми будут соответственно круговые цилиндрические поверхности, осью кото­рых является ось Оz, полуплоскости, проходящие через ось Оz, и плоскости, параллельные плоскости Оху. Частичными областями  служат прямые цилиндры MN (рис. 5). Так как объем цилиндра MN равен площади основания, умноженной на высоту, то для элемента объема получаем выражение

Сферические координаты.

Отнесём теперь область интегрирования  к системе сферических координат . В этой системе координат положение точки M в пространстве определяется её расстоянием r от начала координат (длина радиуса-вектора точки), углом  между радиусом-вектором точки и осью Oz и углом  между  проекцией радиуса вектора точки на плоскость Oxy и осью Ox (рис. 6). При этом  может изменятся то 0 до а   - от 0  до .

                                    Рис.6

Связь между сферическими и декартовыми координатами легко устанавливается. Из рис.6 имеем

Пример. Найдем центр тяжести однородного полушара :

Две координаты центра тяжести  равны нулю, ибо полушар симметричен относительно оси Оz (тело вращения с осью Оz).

Интеграл   удобно вычислить, перейдя к сферическим координатам:

Так как объём полушара равен  то

               

Перейдём к вычислению моментов инерции тела относительно координатных осей. Так как квадраты расстояний от точки P(x, y, z) до осей Ox, Oy, Oz соответственно равны  то полагая для простоты  получим следующие формулы :

Аналогично плоскому случаю интегралы

называются центробежными моментами инерции.

Для полярного момента инерции формула имеет вид

Если тело неоднородное, то в каждой формуле под зна­ком интеграла будет находиться дополнительный множитель  - плотность тела в точке P.

Пример. Вычислим полярный момент инерции однородного шара радиуса R. В этом случае очень удобно перейти к сфери­ческим координатам. Будем иметь

где М—масса шара.

Объём цилиндрического тела.

Двойной интеграл.

 

Пусть в некоторой замкнутой области D плоскости хОу определена ограниченная функция z = f(x,у), причём f(x,y)>0. К определению двойного интеграла приходим, вычисляя объём фигуры, основание которой - область D; сверху фигура ограничена поверхностью, уравнение которой z=f(x,y) боковая поверхность - цилиндрическая, образованная прохождением прямой, параллельной оси Oz вдоль границы L области D. Такая фигура называется цилиндрическим телом (рисунок 1).

Рисунок 1. Цилиндрическое тело

Объём цилиндрического тела можно вычислить приближённо, заменив его ступенчатой фигурой следующим образом.

Основные свойства и приложения двойного интеграла

1. Линейные свойства двойного интеграла:

2. Если область D разделена на несколько частей D1, D2,...,Dk без общих внутренних точек, то

3. Если функция f(x, у) непрерывна в замкнутой области D, то в этой области найдётся такая точка (хо,уо), что

где SD - площадь области D (теорема о среднем).

4. Если m, М - наименьшее и наибольшее значения непрерывной функции f(x,y) в области D, то справедливо двойное неравенство (оценка двойного интеграла):

где SD - площадь области D (теорема о среднем).

Вычисление двойного интеграла в декартовых координатах

Область D называется правильной относительно оси Ох, если прямая, параллельная этой оси, проходящая через внутреннюю точку области D, пересекает границу области в двух точках. Аналогично определяется правильная область относительно оси Оу.

 Рисунок 2. Рисунок 3.

Рисунок 2 - Область, правильная, относительно оси Оу Рисунок 3 - Область, правильная, относительно оси Ох

Область D, правильную относительно как Ох, так и Оу, называют просто правильной областью.

Если область D - правильная относительно Оу (рисунок 2), двойной интеграл вычисляется по формуле:

Изменим порядок интегрирования. При этом нижняя граница области D задана двумя аналитическими выражениями . В этом случае область D нужно разбить на две области Dl, D2 с помощью прямой, проходящей по оси Оу. На основании свойства 2 двойного интеграла получаем:

Двойной интеграл в полярных координатах

Если область интегрирования D - круг или часть круга, то обычно двойной интеграл вычислить легче, если перейти к полярным координатам. Полярный полюс помещается в начало декартовых координат, полярная ось направлена вдоль оси Ох. Формулы перехода к полярным координатам:

Дифференциал площади в полярных координатах равен

ds = rdrdφ

С учётом формул (10), (11) находим:

Двойные интегралы в полярных координатах выражаются через двукратные интегралы вида

Приложения тройного интеграла

С помощью тройного интеграла наряду с другими величинами можно вычислить:

1) объём области V по формуле

2) массу m тела V переменной плотностью

по формуле

Вычисление тройного интеграла в декартовых и других координатах

Тройной интеграл в декартовых координатах

Вычисление тройного интеграла сводится к последовательному вычислению трёх однократных интегралов. При  этом дифференциал объёма равен

произведению дифференциалов независимых переменных dv = dxdydz. Область интегрирования называется правильной, если прямая, проходящая через произвольную внутреннюю точку области интегрирования параллельно каждой оси координат пересекает границу области в двух точках. В правильной области можно выбрать любую последовательность интегрирования по переменным х, у, z. Вычисление начинается с построения рисунка области интегрирования по заданным уравнениям границ области. Выбрав первую переменную интегрирования, нужно построить проекцию области интегрирования на плоскость двух других переменных. Например, если первое интегрирование производится по переменной z, то будет нужна проекция области на плоскость хОу.

Пусть поверхность, ограничивающая область V снизу, имеет уравнение

Тройной интеграл в сферических координатах

Если область V ограничена сферой или частью сферы, тройной интеграл вычислить проще переходом к сферическим координатам. Точка М в сферических координатах однозначно определяются величинами ρ, φ, θ. Здесь ρ- расстояние ОМ до точки из начала координат; φ- угол между проекцией ОМ на плоскость хОу и

осью Ох; θ - угол между положительным направлением оси Oz и лучом ОМ. Связь между прямоугольными декартовыми координатами х, у, z точки М и её

сферическими координатами ρ, φ, θ определяется соотношениями

где

Дифференциал объёма в сферических координатах выражается как

Формула замены переменных в тройном интеграле имеет вид:

Основные свойства и приложения криволинейного интеграла первого рода

1. Линейные свойства:

2.Если линия L состоит из частей L1 и L2, то

3. При изменении направления интегрирования криволинейный интеграл не изменяет своего значения, т.е. если под MN и NM понимать разнонаправленные линии, то

4. Это свойство характерно только для криволинейного интеграла 1-го рода, ввиду того, что dl > 0 при любом движении вдоль кривой MN.

С помощью криволинейных интегралов 1-го рода можно вычислять следующие геометрические и физические величины:

Вычисление криволинейных интегралов 1-го рода

Чтобы вычислить криволинейный интеграл 1-го рода, его нужно преобразовать в определённый интеграл с помощью уравнения кривой интегрирования, при этом:

- если кривая MN задана уравнением:

, то

- если кривая MN задана уравнением:

, то

- если кривая MN задана параметрическими уравнениями:

Криволинейный интеграл второго рода

Пусть по кривой MN, расположенной в плоскости хОу, движется материальная точка Р (х, у ), к которой приложена сила F , изменяющаяся по величине и направлению при перемещении точки. Физическая задача вычисления работы силы  при перемещении точки Р из положения М в положение N приводит к понятию криволинейного интеграла второго рода. Для этого кривая MN разбивается на п произвольных частей точками М=M1,M2,M3,…Mn=N

Напрвленные отрезки обозначим вектором , величину силы F в точке Мj обозначим Ft. Тогда скалярное произведение Fi • Mt - приближённое выражение работы силы  вдоль дуги Mi-1Mi Работа на всей кривой MN

Пусть - проекции вектора на оси координат, Δхi, Δуi, - проекции вектора . Запишем скалярное произведение в формуле (33) через проекции векторов:

Формула Грина. Условие независимости криволинейного интеграла второго рода от вида пути

Интегрирования

Пусть D - некоторая замкнутая область на плоскости хОу, ограниченная контуром L. На ней заданы функции Р = Р(х,у) и Q = Q(x,y), непрерывные на D вместе со своими частными производными первого порядка. Формула Грина связывает криволинейный интеграл второго рода по L с двойным интегралом по области D:

Движение по контуру L - в положительном направлении.

С помощью формулы Грина значение криволинейного интеграла по замкнутому контуру можно найти, вычислив двойной интеграл.

Поверхностный интеграл первого рода

Пусть f(x,y,z) - функция, непрерывная на гладкой поверхности S. (Поверхность называется гладкой, если в каждой её точке существует касательная плоскость, непрерывно изменяющаяся вдоль поверхности). Производя относительно поверхности S и функции f(x,y,z) действия, подобные действиям при составлении суммы (1), составим сумму

где п - число частей, на которые разделена поверхность S; произвольная точка, взятая в i -ой части; ΔSi - площадь i -ой части.

Поверхностный интеграл первого рода от функции f(x, у, z) по поверхности S определяется как предел

Поверхностный интеграл 1 -го рода обладает такими же свойствами, как и другие, рассмотренные интегралы. Интеграл не зависит от выбора стороны поверхности интегрирования.

Поверхностный интеграл второго рода

К понятию поверхностного интеграла 2-го рода приводит физическая задача о вычислении потока жидкости через некоторую поверхность S. При этом, в каждой точке поверхности S задаётся векторная функция (x,y,z) скорости жидкости.

Поверхность S называется двусторонней, если нормаль к поверхности при обходе по любому замкнутому контуру, лежащему на поверхности S, возвращается в первоначальное положение. Сторона поверхности S задаётся выбором направления нормали к поверхности, в этом случае поверхность называется ориентированной. Поверхностный интеграл 2-го рода имеет вид

где - скалярное произведение, в котором - единичный вектор нормали к заданной стороне поверхности S в произвольной точке (S - поверхность интегрирования). Применяется и другое обозначение векторной функции, а именно . Если векторные функции задать своими координатами

Примеры решения задач

1. Указания к выполнению задания 1

Область интегрирования D задана уравнениями границ. По заданным уравнениям нужно нарисовать кривые или прямые линии, которые образуют замкнутую область D. Затем нужно выбрать порядок интегрирования и применить формулу (8) или (9), как это выполнено в примере 1. Достаточно выполнить интегрирование только по одной из двух формул.

2. Примеры выполнения заданий 2 и 3

В заданиях 2 и 3 требуется вычислить двойные интегралы, для чего вначале нужно изобразить область интегрирования D.

Указания к изображению области интегрирования D.

Уравнение  - уравнение окружности радиуса R с центром в точке (х0,у0).

3. Пример выполнения задания 4

Вычислить с помощью тройного интеграла обьём тела, ограниченного указанными поверхностями. Сделать рисунок данного тела и его проекции на плоскость хОу.

Примечания к построению рисунка тела. Плоскость в пространстве задаётся  общим уравнением вида

Ах + By + Cz + D = 0. Если D=0, то плоскость проходит через начало координат. Если равен нулю один из коэффициентов А,В.С, то плоскость параллельна оси отсутствующей переменной. Если два коэффициента из трёх (А, В, С) равны нулю, то плоскость параллельна координатной плоскости, проходящей через оси отсутствующих переменных.

Если уравнение поверхности не содержит одну из трёх независимых переменных, это является признаком того, что поверхность - цилиндрическая, с образующей, параллельной оси отсутствующей переменной. Заданное уравнение при этом -уравнение направляющей линии.

Уравнение сферы радиусом R с центром в начале координат имеет вид:

 РЕШЕНИЕ Интеграл по ломанной линии MNV вычисляем суммой двух интегралов: по отрезку прямой MN и отрезку NV. Определим уравнение прямой интегрирования MN, как уравнение прямой, проходящей через две точки

Таким образом

Работу вычисляем по формуле

где

 Криволинейный интеграл вычисляем по формуле (35):

Функция нескольких переменных и ее частные производные

Определение функции нескольких переменных

Если каждой паре (x, y) значений двух независимых друг от друга переменных x и y из некоторого множества D соответствует определённое значение величины z, то говорят, что z есть функция двух независимых переменных x и y, определённая на множестве D. Множество D называется областью определения функции z = z (x, y).

Обозначается: z = f (x, y) или z = z (x, y).

Пример. .

Аналогично определяются функции трёх и более переменных.

Полное приращение и полный дифференциал ФНП

Полным приращением функции двух переменных z = f (x, y) в точке (x, y), вызванным приращениями аргументов  и , называется выражение .

Функция z = f (x, y) называется непрерывной в точке (x, y), если бесконечно малым приращениям аргументов соответствует бесконечно малое полное приращение функции.

Если обозначить  – расстояние между близкими точками  и (х, у), то  – это определение непрерывности ФНП на языке приращений.

Если функция z = f (x, y) непрерывна в любой точке (х, у)ÎD, то она называется непрерывной ФНП в области D.

 Функция z = f (x, y), полное приращение Dz которой в данной точке (x, y) может быть представлено в виде суммы двух слагаемых: выражения, линейного относительно   и , и величины, бесконечно малой более высокого порядка малости относительно , называется дифференцируемой ФНП в данной точке, а линейная часть ее полного приращения называется полным дифференциалом ФНП.

Частные производные ФНП, заданной неявно

Если каждой паре чисел (x, y) из некоторой области DxOy соответствует одно или несколько значений z, удовлетворяющих уравнению , то это уравнение неявно определяет функцию 2-х переменных, например, функцию .

Если существуют частные производные функции F(x, y, z):  и , то существуют частные производные от функции z (x, y), которые можно вычислить по формулам:

. (2)

Пример. Дано: . Найти  и .

Здесь . По формулам (2) находим:

 

Экстремумы ФНП

Локальные максимумы и минимумы ФНП

Говорят, что функция z = f (x, y) имеет локальный максимум в точке (x0, y0), если существует окрестность точки (x0, y0), в которой выполнено неравенство f (x0, y0) > f (x, y) для всех точек (x, y) из этой окрестности, отличных от (x0, y0): .

Если же f (x0, y0) < f (x, y) для всех точек (x, y) из некоторой окрестности точки (x0, y0), отличных от (x0, y0), то функция z имеет локальный минимум ФНП в точке (x0, y0): .

Максимум  и минимум  называют локальными экстремумами ФНП.

Необходимое условие экстремума ФНП: если функция z = f (x, y) имеет экстремум в точке (x0, y0), то каждая частная производная первого порядка функции z в точке (x0, y0) либо равна нулю, либо не существует.

Необходимое условие не является достаточным. Точки из ООФ, в которых необходимое условие выполнено, называются критическими точками функции, или точками, подозрительными на экстремум.

Касательная плоскость и нормаль к поверхности

Графиком функции 2-х переменных z = f (x, y) является поверхность, проектирующаяся на плоскость xOy в область определения функции D.

Рассмотрим поверхность σ, заданную уравнением z = f (x, y), где f (x, y) – дифференцируемая функция, и пусть M0(x0, y0, z0) – фиксированная точка на поверхности σ, т.е. z0 = f (x0, y0).

Касательной плоскостью к поверхности σ в её точке М0 называется плоскость, в которой лежат касательные ко всем кривым, проведённым на поверхности σ через точку М0.

 Уравнение касательной плоскости к поверхности, заданной уравнением z = f (x, y), в точке M0(x0, y0, z0) имеет вид:

. (5)

Вектор  называется вектором нормали к поверхности σ в точке М0. Вектор нормали перпендикулярен касательной плоскости (рис. 1).

Нормалью к поверхности σ в точке М0 называется прямая, проходящая

Функции комплексной переменной

Определение и свойства функции комплексной переменной

 Пусть даны две плоскости комплексных чисел и на первой – множество D комплексных чисел z = x + iy, где i – мнимая единица (i2 = –1), на второй – множество G комплексных чисел w = u +iv.

Если каждому числу  по некоторому правилу f поставлено в соответствие определенное число , то говорят, что на множестве D задана функция комплексной переменной (ФКП), отображающая  множество D в множество G. Обозначается: w = f (z).

Множество D называется областью определения ФКП.

Дифференцирование ФКП. Аналитические ФКП

Производной от функции комплексной переменной w = f (z) в точке z0 называется предел:

,

где , и  произвольным образом.

Функцию w = f (z), дифференцируемую в точке z0 и некоторой ее окрестности, называют аналитической, или регулярной функцией в точке z0.

 Точки, в которых ФКП не является аналитической, называют особыми точками этой функции.

Для того, чтобы функция f (z) = u(x, y) +iv(x, y) была аналитической в области D необходимо и достаточно, чтобы частные производные 1-го порядка функций u(x, y) и v(x, y) были непрерывны в этой области и выполнялись бы условия:

Функцию w = f (z) можно представить в виде

Здесь внутренний интеграл вычисляется по переменной x в предположении, что y = const; результатом вычисления внутреннего интеграла является некоторая функция от y, которая затем интегрируется в постоянных пределах.

Если область D – правильная в обоих направлениях, то повторный интеграл не зависит от порядка интегрирования, и для вычисления двойного интеграла можно использовать любой из двух порядков интегрирования:

.

 Если область D – неправильная в обоих направлениях, то ее можно разбить на правильные части и воспользоваться свойством аддитивности двойного интеграла: .

Вычисление двойного интеграла в полярных координатах

f (z) = u(x, y) + iv(x, y),

где u(x, y) – действительная часть ФКП, v(x, y) – мнимая часть ФКП, обе они – действительные функции от x, y.

Пример 1. . Здесь  = x – iy – число, сопряженное числу z= x+iy.

Выделим действительную и мнимую части ФКП:

Некоторые приложения двойных интегралов

 Если подынтегральная функция f (x, y) º 1, то двойной интеграл от функции f (x, y) по области D равен площади области интегрирования:

.

Если область D занята тонкой пластинкой и  – поверхностная плотность распределения неоднородного материала (т.е. масса единицы площади), то при помощи двойного интеграла можно вычислить массу пластинки, ее статические моменты относительно осей координат и другие величины.

Масса пластинки: m = .

Статический момент относительно оси Ox:

. (11)

Статический момент относительно оси Oy: My = .

Все перечисленные интегралы можно вычислить в декартовых либо в полярных координатах, переходя к соответствующему повторному интегралу.

Тройной интеграл

Некоторые приложения тройных интегралов

 Если подынтегральная функция f (x, y, z) º 1, то тройной интеграл от нее по области V равен мере области интегрирования – объему пространственного тела, занимающего область V: .

Если  – это плотность неоднородного материала (т.е. масса единицы объема), из которого изготовлено тело, то при помощи тройного интеграла можно вычислить массу тела, его статические моменты относительно координатных плоскостей и другие величины. Например, формула для вычисления массы тела имеет вид:

. (12)

Криволинейный интеграл II рода (по координатам)

Общий вид криволинейного интеграла II рода (по координатам):

,

где BC – это дуга пространственной линии от точки B до точки C с указанным на ней направлением,  P (x, y, z),  Q (x, y, z), R (x, y, z) – некоторые функции, заданные во всех точках дуги BC.

В двумерном случае: , где BCxOy.

Если P (x, y), Q (x, y) – проекции на оси Ox и Oy вектора переменной силы , то

 А = (13)

– это работа силы  при перемещении точки ее приложения вдоль участка дуги BC.

Векторная функция скалярного аргумента

Если каждому значению параметра t из некоторого промежутка  ставится в соответствие по некоторому правилу определенный вектор, то говорят, что задана вектор-функция скалярного аргумента t: .

Откладывая векторы  при  от начала координат, получаем траекторию движения конца вектора, называемую годографом вектор-функции .

Проекции вектора  на оси координат являются функциями аргумента t, поэтому можно записать вектор-функцию в координатной форме:

,

где векторы  – это орты координатных осей Ox, Oy и Oz.

Первую, вторую и т.д. производные вектор-функции  находят дифференцированием ее проекций x(t), y(t) и z(t) по аргументу t:

,

Векторное поле

Поток векторного поля через поверхность

Если в любой точке M(x, y, z) области VxOyz задан вектор , то говорят, что в области V задано векторное поле .

Примеры: силовое поле , поле скоростей  текущей жидкости, поле электростатических напряженностей .

Векторное поле является заданным, если задана векторная функция   от координат точки M(x, y, z). Как правило, функцию задают в виде , где P (x, y, z), Q (x, y, z),  R (x, y, z) являются функциями, о которых предполагают, что они непрерывны и имеют непрерывные частные производные по x, y, z  в области V (область V может совпадать со всем пространством).

Аналогично определяют плоское векторное поле  в двумерной области D: .

Формула Остроградского-Гаусса. Дивергенция

Формула Остроградского-Гаусса устанавливает связь между интегралом по замкнутой поверхности σ в направлении ее «внешней» нормали и тройным интегралом по области V, ограниченной этой поверхностью:

.

Пусть  – векторное поле, заданное в области VxOyz . Дивергенцией векторного поля  называется скалярная функция

, (17)

Соленоидальное векторное поле

Векторное поле  называется соленоидальным, если существует такое векторное поле , для которого поле является полем его роторов: .

Поле  называется векторным потенциалом векторного поля .

Практически соленоидальность векторного поля определяется при помощи его дивергенции: если во всех точках односвязной области V дивергенция векторного поля равна нулю, то это векторное поле является соленоидальным.

Решение примерного варианта контрольной работы №1

Задача 1. Дана функция z = cos2(2x – y). Требуется:

1) найти частные производные  и ;

2) найти полный дифференциал dz;

3) показать, что для данной функции справедливо равенство: .

Задача 2. Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0.

Решение.

Имеем равенство вида F(x, y, z) = 0, задающее неявно функцию 2-х переменных. Для вычисления частных производных можно использовать формулы (2) и (3).

Для F(x, y, z) = 4x2yez – cos(x3 – z) + 2y2 + 3x получаем:

F= (4x2yez – cos(x3 – z) + 2y2 + 3x) = [считаем y и z постоянными] =

= 8xyez + sin(x3 – z)3x2 + 3 = 8xyez + 3x2sin( x3 – z) + 3;

F= (4x2yez – cos(x3 – z) + 2y2 + 3x) = [считаем x и z постоянными] =

= 4x2ez + 4y;

F = (4x2yez – cos(x3 – z) + 2y2 + 3x) = [считаем x и y постоянными] =

= 4x2yez – sin (x3 – z).

По формулам (2) находим частные производные функции z = z(x, y):

Задача 4. Дана функция двух переменных: z = x2 – xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1,

x + y = 3. Требуется:

1) найти наибольшее и наименьшее значения функции z в области D;

2) сделать чертеж области D в системе координат, указав на нем точки, в которых функция имеет наибольшее и наименьшее значения.

Решение.

Для наглядности процесса решения построим область D в системе координат. Область D представляет собой треугольник, ограниченный прямыми x = 0, y = –1 и x + y = 3. Обозначим вершины треугольника: A, B, C (рис 9).

Чтобы найти наибольшее и наименьшее значения функции z, сначала найдем все стационарные точки функции z = x2 – xy + y2 – 4x + 2y + 5, лежащие внутри области D (если они есть), и вычислим в них значения функции.

Стационарные точки – это точки, в которых все частные производные

Задача 5. Поверхность σ задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.

Решение.

Уравнения касательной плоскости и нормали к поверхности σ получим, используя формулы (5) и (6). Найдем частные производные функции

z = f (x, y) =  + xy – 5x3:

(x, y) = ( + xy – 5x3) = –  + y – 15x2;

(x, y) = ( + xy – 5x3) =  + x.

Точка М0(x0, y0, z0) принадлежит поверхности σ, поэтому можно вычислить z0, подставив заданные x0 = –1 и y0 = 2 в уравнение поверхности:

z =  + xy – 5x3  z0 =  + (–1) 2 – 5 (–1)3 = 1.

Вычисляем значения частных производных в точке М0(–1, 2, 1):

.

Задача 6. Дано плоское скалярное поле U = x2 –2y, точка М0(1,–1) и вектор . Требуется:

1) найти уравнения линий уровня поля;

2) найти градиент поля в точке M0 и производную  в точке M0 по направлению вектора ;

3) построить в системе координат xОy 4-5 линий уровня, в том числе линию уровня, проходящую через точку M0, изобразить вектор  на этом чертеже.

Задача 7. Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i. Требуется:

представить функцию в виде w = u(x, y) +iv(x, y), выделив ее действительную и мнимую части;

проверить, является ли функция w аналитической;

в случае аналитичности функции w найти ее производную w′ в точке z0.

Решение.

1) Выделим действительную и мнимую части функции:

.

Решение примерного варианта контрольной работы №2

Задача 1. Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области  D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Указание. Считать плотность вещества .

Решение.

 Область D (рис. 11) представляет собой криволинейный треугольник MNK, где . Для определения координат точки М решаем систему уравнений:

Задача 2. Используя тройной интеграл в цилиндрической системе координат, вычислить массу кругового цилиндра, нижнее основание которого лежит в плоскости xOy, а ось симметрии совпадает с осью Oz, если заданы радиус основания R = 0,5, высота цилиндра H = 2 и функция плотности , где r – полярный радиус точки.

Решение.

 Массу кругового цилиндра можно вычислить, используя тройной интеграл по области V, по формуле (12):

,

где – функция плотности, а V – область, соответствующая цилиндру.

Переходя к трехкратному интегралу в цилиндрических координатах, получаем:

Для вычисления работы используем криволинейный интеграл II рода (формула (13)): .

Составленный криволинейный интеграл сводим к определенному интегралу, используя параметрические уравнения кривой ВС:

.

Для заданной кривой получаем:

Таким образом, для нахождения работы нужно вычислить определенный интеграл:

 Сделаем замену переменной в определенном интеграле:

Задача 4. Задан радиус-вектор движущейся точки:

 . Найти векторы скорости и ускорения движения этой точки через 2 минуты после начала движения.

Решение.

Вектор-функция задана в виде: .

Найдем первые и вторые производные ее проекций x(t), y(t) z(t) по аргументу t:

Найдем векторы скорости и ускорения движения точки по формулам (14) и (15):

.

Через 2 минуты после начала движения векторы скорости и ускорения будут:

Задача 6. Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3).

Решение.

Для проверки потенциальности векторного поля  найдем его ротор по формуле (19):

Следовательно, поле потенциально.

 Для проверки соленоидальности поля найдем его дивергенцию по формуле (17):

.

Следовательно, поле не соленоидально.

 

 

Сети

Интегралы