Сети

Задача
Математика
Интегралы
Атомная энергетика
Руководство
Конспекты

Тройной интеграл в цилидрических координатах

Цилиндрические координаты при вычислении тройного интеграла удобно применять тогда, когда область V проектируется на одну из координатных плоскостей в круг или часть круга. Если этой координатной плоскостью является плоскость хОу, то цилиндрические координаты r, φ, z связаны с прямоугольными координатами х, у, z соотношениями

где

Формула замены переменных в тройном интеграле имеет вид:

Тройной интеграл в сферических координатах

Если область V ограничена сферой или частью сферы, тройной интеграл вычислить проще переходом к сферическим координатам. Точка М в сферических координатах однозначно определяются величинами ρ, φ, θ. Здесь ρ- расстояние ОМ до точки из начала координат; φ- угол между проекцией ОМ на плоскость хОу и

осью Ох; θ - угол между положительным направлением оси Oz и лучом ОМ. Связь между прямоугольными декартовыми координатами х, у, z точки М и её

сферическими координатами ρ, φ, θ определяется соотношениями

где

Дифференциал объёма в сферических координатах выражается как

Формула замены переменных в тройном интеграле имеет вид:

ОДУ высших порядков.

Линейные уравнения с постоянными коэффициентами

Задания для подготовки к практическому занятию

Прочитайте лекции, §26.1, 27.1-5. Ответьте на вопросы и выполните задания.

п1. Для данных неоднородных линейных уравнений выписать соответствующие однородные линейные уравнения и составить характеристические уравнения:

 а) ; б) ; в)

п2. По данным характеристическим уравнениям составить однородные линейные уравнения: 

 а) ; б) ; в)

Задачи к практическому занятию

1.;  2. ; 3.;

4.;  5.;

6.;  7.; 8.; 9.;

10.; 11.;

12.; 13.;

14.; 15.;

16.;  17.; 18.

13.  Подбор частного решения для линейного уравнения с правой частью специального вида

Задания для подготовки к практическому занятию

Прочитайте лекции, §27.6. Ответьте на вопросы и выполните задания.

п1. Для каждого из данных неоднородных линейных уравнений с постоянными коэффициентами выпишите правую часть и определите, является ли она функцией специального вида. Если да, выпишите значения параметров a,b, k:

 а) ; б) ; в) ;

 г) ; д) ; е)

Векторный анализ. Элементы теории векторного поля", а также ссылки на теоретический материал, необходимый для выполнения этих контрольных работ и список рекомендуемой литературы. В результате изучения этих тем студенты должны: o знать определения основных понятий теории дифференциального исчисления функций нескольких переменных (ФНП): частные производные, полный дифференциал и др

Сети

Интегралы