Чертежи
Математика
Информатика
Физика
Черчение
Итегралы
Архитектура ПК
Живопись

Термех

Задачи
Начертательная геометрия
Лекции
Инженерная графика
Типовой
Курсовая
На главную

Решение задач по физике примеры Динамика колебания

Задачи для самостоятельного решения.

Рассмотрим ситуацию, моделирующую процесс столкновение атома и молекулы. Первоначально система, описанная в задаче 2.3, неподвижна и пружинка не деформирована. Второму шарику сообщается импульс p0 = m2V0 в сторону первого (удар налетающего атома). Определите скорость Vc центра масс системы, и частоту w0 возникающих колебаний.

В условиях задачи 2.4 определите а) амплитуду A изменения деформации пружины, б) энергию поступательного Eпост и колебательного Eкол движения системы.

Потенциальная энергия частицы массы т в одномерном силовом поле зависит от ее координаты х по закону U(x) = U0(1 – cos ax), U0 и а – постоянные. Найдите частоту малых колебаний этой частицы около положения равно­весия.

Груз массой m = 0,2 кг, подвешенный на пружине жесткостью k = 20 Н/м, лежит на подставке так, что пружина не деформирована. Подставку убирают, и груз начинает двигаться. Найдите закон движения груза и его максимальную скорость.

С горизонтальной пружиной, жесткость которой k = 25 H/м связано тело массой М = 1 кг, лежащее на абсолютно гладком столе. В это тело попадает и застревает в нем пуля массой т = 10 г, летевшая со скоростью V = 200 м/с, направленной вдоль оси пружины. Определите период и амплитуду возникших колебаний. Выбрав момент попадания пули за начало отсчета времени, найдите зависимость координаты тела от времени. Теория атома водорода по Бору Большую роль в развитии атомистической теории сыграл Д. И. Менделеев, разработавший в 1869 г. Периодическую систему элементов, в которой впервые на научной основе был поставлен вопрос о единой природе атомов. Во второй половине XIX в. экспериментально было доказано, что электрон является одной из основных составных частей любого вещества. Эти выводы, а также многочисленные экспериментальные данные привели к тому, что в начале XX в. серьезно встал вопрос о строении атома.

Тело массой m падает с высоты h на чашу пружинных весов и прилипает к ней. Найдите частоту и амплитуду возникших колебаний. Определите зависимость координаты чаши от времени после соударения. Масса чаши и пружины пренебрежи­мо мала, жесткость пружины k .

К потолку на тонкой проволоке подвешен однородный диск массы т = 0,2 кг и радиуса R = 20 см (рис.). Модуль кручения проволоки) равен D = 0,1 Н×м/рад. Определите: а) частоту w0 малых крутильных колеба­ний диска, б) амплитуду А и начальную фазу j0 колебаний, если в начальный момент диск повернули на угол a = 0,2 рад и сообщили ему начальную угловую скорость W = 1 рад/c в направлении поворота.

Два диска закреплены соосно на одном тонком стержне, имеющем модуль кручения D = 1,5 Н×м/рад. Радиус дисков одинаков и равен R = 0,2 м. Массы дисков равны: m1 = 1 кг и m2 = 3 кг. Диски поворачивают в противоположные стороны и отпускают. а) Чему равна частота w0 малых крутильных колебаний дисков? б) Какой будет частота, если один из дисков (например, второй) закрепить.

Физический маятник представляет собой шар радиуса R =  м, висящий на тонком невесомом стержне длины l = R. В начальный момент времени маятнику сообщили угловую скорость W = 0,25 рад/c. Найдите частоту w0 малых колебаний маятника и зависимость от времени угла отклонения маятника от вертикали  j(t).

Цилиндрический поплавок высоты h = 2 см плавает на поверхности воды. Определите период малых колебаний поплавка по вертикали, которые возникают, если его слегка погрузить в воду и отпустить. Плотность материала поплавка r = 800 кг/м3, плотность воды r0 = 1000 кг/м3.

В стеклянную U-образную трубочку налита ртуть так, что весь столбик ртути имеет длину l = 20 см. После заполнения трубочку слегка наклонили, и возвратили в вертикальное положение, отчего ртуть начала колебаться. Определите период T0 этих колебаний, пренебрегая трением.

На середине натянутой струны длины l = 1 м укреплен ша­рик массой т = 50 г. Найдите частоту малых поперечных колебаний этого шарика. Силу натяжения струны считать постоянной и равной T = 20 Н. Массой струны и силами тяжести пренебречь.

Электроны в молекулах и кристаллах Молекула водорода. Физическая природа химической связи. Ионная и ко-валентная связи. Электронные, колебательные и вращательные состояния мно-гоатомных молекул. Молекулярные спектры. Строение кристаллического твердого тела. Энергетические зоны в кри-сталлах. Распределение электронов по энергетическим зонам. Уровень Ферми. Металлы, диэлектрики, полупроводники. Электропроводность полупроводни-ков. Понятие о дырочной проводимости. Собственные и примесные полупро-водники. Понятие о р-n переходе. Транзистор. Жидкие кристаллы. Тема 18. Элементы квантовой электроники Элементы квантовой теории излучения. Вероятность перехода. Вынуж-денное и спонтанное излучение. Принцип работы квантового генератора Свой-ства лазерного излучения. Приложения квантовой электроники. Тема 19. Атомное ядро Строение и свойства атомных ядер. Заряд, размерыи масса атомного ядра. Массовое и зарядовое числа. Состав ядра. Нуклоны. Свойства и природа ядерных сил. Дефект массы и энергия связи ядра. Происхождение и закономерности альфа-, бета-, гамма- излучений атомных ядер. Закон радиоактивного распада. Ядерные реакции и законы сохранения. Цепная реакция деления ядер. Управляемые и неуправляемые ядерные реакции. Понятие об ядерной энерге-тике. Реакция синтеза атомных ядер. Проблема управляемых ядерных реакций.

В условиях задачи определите а) амплитуду A изменения деформации пружины, б) энергию поступательного Eпост и колебательного Eкол движения системы.

Потенциальная энергия частицы массы т в одномерном силовом поле зависит от ее координаты х по закону U(x) = U0(1 – cos ax), U0 и а – постоянные. Найдите частоту малых колебаний этой частицы около положения равно­весия.

Груз массой m = 0,2 кг, подвешенный на пружине жесткостью k = 20 Н/м, лежит на подставке так, что пружина не деформирована. Подставку убирают, и груз начинает двигаться. Найдите закон движения груза и его максимальную скорость.

Доску положили на два быстро вращающихся навстречу друг другу (в противоположных направлениях) цилиндрических ролика. Расстояние между осями роликов l = 80 см, коэффициент трения скольжения между стержнем и роликами m = 0,16. Покажите, что стержень будет совершать гармонические колебания и найдите их частоту w0.

В кабине самолета подвешен маятник. Когда самолет летит без ускорения, маятник качается с частотой w0. Какова будет частота колебаний маятника, если самолет взлетает с ускорением а, направленным под углом a к горизонту? Отдельно рассмотрите случай, когда а = g и a = 0.

* Кольцо массы М = 0,3 кг может скользить без трения по горизонтальному стержню в установке, изображенной на рисунке. Кольцо соединено двумя одинаковыми  пружинками жесткостью k = 15 Н/м , с точками А и В установки. Установка вращается с постоянной угловой скоростью W = 6 рад×с вокруг вертикальной оси, проходя­щей через середину стержня. а) Найдите частоту малых колеба­ний кольца. б) При какой угловой скорости W колебания не возникнут?

Затухающие колебания.

 У реального осциллятора всегда есть потери колебательной энергии. Поэтому свободные колебания будут затухающими (не гармоническими). В частности, учет сил вязкого трения (Fc = r×) для механического осциллятора или сопротивления электрических контуров (U = RI = R) приводит к дифференциальному уравнению типа: , (4.1)

где b – новая константа называемая коэффициентом затухания, w0 – собственная частота осциллятора в отсутствии затухания. Вид решения этого уравнения как раз и зависит от соотношения констант w0 и b, а их значения определяются параметрами конкретной колебательной системы.

1) Для случая b < w0 (малое затухание) его решением является функция:

Амплитуда и начальная фаза колебаний как обычно определяются начальными условиями.

Задача В условиях предыдущей задачи определить параметры затухающих колебаний в системе: а) время релаксации амплитуды (tA); б) количество колебаний, за которое амплитуда уменьшится в e раз (Ne); в) логарифмический декремент затухания g ;

Таким образом оказалось, что добротность равна числу колебаний осциллятора, за которое амплитуда уменьшается в 23 раза.

Задача При какой величине коэффициента вязкости r в устройстве, рассмотренном в задачах 4.1-4.3, реализуется критический режим. Определить зависимость смещения от времени в критическом режиме, если в начальный момент времени телу в положении равновесия сообщают скорость V0 = 1 м/с.

Решение Критический режим колебаний реализуется при b = w0 = 10 с-1. Для рассматриваемой колебательной системы:

  200 кг/с.

 Общее решение для критического режима может быть записано в виде:

.

Начальные условия:

В представленных выше задачах (4.1 – 4.6) затухание колебаний обусловлено наличием вязкого трения. Колебания в системе с “сухим трением” рассмотрим на примере следующей задачи.

Задача

На горизонтальном столе лежит брусок массы m = 0,5 кг, прикрепленный горизонтальной пружиной к стене. Коэффициент трения скольжения бруска о поверхность стола равен m = 0,1. Брусок сместили по оси Х так, что пружина рас­тянулась на x0 = 6,3 см, и затем отпустили. Жесткость пружинки k = 100 Н/м, а ее масса пренебрежимо мала.

а) Найти число колебаний, которое совершит брусок до остановки.

б) Построить график зависимости от времени смещения бруска от начального положения х(t);

Движение бруска от положения с координатой х(1) вправо. ()

В уравнении движения изменится лишь знак слагаемого m×mg в правой части

 -kx – m×mg.

После аналогичных переобозначений приходим к решению для второго этапа движения ( обозначим его x(2)):

.

Отметим, что отсчет времени в этой записи решения следует начинать от начала данного этапа движения. A1 = x1 + x0 = - 4,8 см. Частота колебаний, конечно, прежняя.

К концу второго этапа движения координата тела окажется равной:

  4,3 см.

Музыкальный камертон имеет собственную частоту колебаний n = 1000 Гц. Через какое время громкость его звучания уменьшится в п = 106 раз, если логарифмический декремент затухания равен g = 0,0006?

Последовательный резонансный колебательный контур состоит из конденсатора емкости С, катушки индуктивности L, сопротивления, равного критическому для данного конту­ра и ключа. При разомкнутом ключе конденсатор зарядили до на­пряжения U0 после чего ключ замкнули. Найдите ток I в контуре как функцию времени t. Чему равна при этом максимальная сила тока в контуре Imax?

Найдите закон изменения заряда на конденсаторе для контура, показанного на рисунке. Параметры контура С, L и R считать известными. Определите, при каком значении активного сопротивления R затухающие колеба­ния переходят в релаксацию.

Весьма наглядными амплитудные и фазовые соотношения между колебаниями, делает векторная форма представления колебаний. В частности, она позволяет качественно и количественно описывать вынужденные колебания. Каждой гармонической функции можно сопоставить вектор на плоскости, длина которого равна амплитуде колебания, а полярный угол – его фазе. Для гармонических колебаний этот вектор вращается относительно начала координат (точки О) против часовой стрелки с угловой скоростью w, равной частоте колебаний. Проекция вектора на ось Х и дает значение гармонической функции.

Для определения амплитуды вынужденных колебаний А и фазового сдвига a достаточно провести сложение векторов

 

Свободные колебания железного стержня, подвешенного на пружине, происходят с частотой wс = 20 рад×с-1, причем амплитуда колебаний уменьшается в h = 5 раз в течение вре­мени tη = ln5 » 1,61 с. Вблизи нижнего конца стержня помещена катушка, питаемая переменным током (см. рисунок). Считая, что амплитуда вынуждающей силы неизменна, найти:

а) коэффициент затухания b,

б) число колебаний Ne, за которые амплитуда уменьшается в е раз и добротность Q, в) при какой частоте тока через катушку wрт колебания стержня достигнут наибольшей амплитуды?

Решение

На вопросы (а) – (б) легко ответить, исходя из сведений о затухающих колебаниях:

В условиях рассматриваемой задачи мм.

Приведем также точный вид амплитудной резонансной кривой для рассмотренного случая вынужденных колебаний. Горизонтальным пунктиром указан уровень амплитуды вынужденных колебаний в  раз меньший резонансного (что соответствует уменьшению колебательной энергии в 2 раза). Он определяет “ширину резонансной кривой” Dw. Нетрудно показать, что Dw = 2b и понятие добротности получает новую трактовку:

.  (5.10)

Для колебательной системы, описанной в предыдущей задаче, построить зависимости от частоты амплитуды вынужденных колебаний, амплитуд поглощения Ап и дисперсии Ад.

Доказать, что при вынужденных колебаниях экстремумы амплитуды дисперсии наблюдаются при частотах вынуждающего воздействия ω @ ωр ± β.

Частота свободных колебаний некоторой си­стемы wс = 50,0 рад×с-1, резонансная частота wр = 49,9 рад×с-1. Определить добротность Q этой системы.

Найти резонансную частоту wр для некоторого механического осциллятора, если амплитуды смещений при вынужденных колебаниях этого осциллятора одинаковы при частотах w1 = 20 рад×с-1 и w2 = 40 рад×с-1.

Определить частоту w*р, соответствующую резонансу скорости некоторого механического осциллятора (когда амплитуда скорости колеблющегося тела максимальна), если амплитуды скорости при частотах вынуждающей силы w1 = 10 рад×с-1 и w2 = 40 рад×с-1 одинаковы.

При некоторой скорости движения поезда его вагоны особенно сильно раскачиваются на рессорах в результате периодических толчков колес о стыки рельс. Когда поезд стоит на станции, рессоры деформированы под нагрузкой вагонов на Dх = 10 см. Длина рельс l = 12,5 м. Определить по этим данным скорость движения поезда.

На крутильный маятник, описанный в задаче 2.10, действует внешняя сила, момент которой меняется по закону N(t) = Nm×coswt. Определить работу сил трения, действующих в системе, за время, равное периоду колебаний. Установившиеся вынужденные колебания маятника происходят по закону: j = jm cos (wt - a).

Грузик массы m = 100 г подвешен на невесомой пружинке с жесткостью k = 32,4 Н/м. Под действием вынуждающей вертикальной гармонической силы грузик совершает установившиеся колебания с частотой w = 17 рад×с-1. При этом колебания шарика отстают по фазе от вынуждаю­щей силы на a = p/4. Определить добротность данного осциллятора.

Работа и энергия. Работа переменной силы. Мощность. Энергия кинетиче-ская и потенциальная. Кинетическая энергия вращающегося тела. Закон сохра-нения энергии в механике. Мощности машин и связь с экологией. Силы упругости и трения. Виды деформации. Закон Гука. Энергия упруго-деформированного тела. Силы трения покоя, скольжения и качения. Коэффи-циент трения. Роль сил трения в технике. Силы тяготения. Закон всемирного тяготения. Гравитационное поле и его напряженность. Потенциальные силовые поля. Космические скорости

Сети

Интегралы